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The asymptotic stability of the zero solution of autonomous systems of differential equations is consid-
ered. For systems satisfying the Barbashin–Krasovskii theorem positive-definite functions are constructed
having a negative-definite derivative. The investigation is based on the method of invariant relations.
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The method of Lyapunov functions is one of the most effective methods for the qualitative investigation of complex dynamic and
controlled systems. As Barbashin showed,1 the importance of this method goes far beyond the mere possibility of establishing the fact of
the stability or instability of a system. A successfully constructed Lyapunov functions for a specific control system enables one to solve
a whole range of problems: to estimate the change in the regulated quantity, to estimate the time for which a transient occurs, the
optimization of the integral quadratic error, etc. Using Lyapunov functions one can estimate the region of attraction, solve the problem of
stability “in the large”, the problem of the existence or absence of periodic solutions, etc.

Unsurprisingly, the problems of constructing Lyapunov functions remain urgent at the present time. One such problem is the construction
of a Lyapunov function which ensures the asymptotic stability for systems satisfying the Barbashin–Krasovskii theorem. In the first paper,2

which announced this result, it was noted that if the set M, which occurs in the formulation of the theorem is specified by the equation
�(x1, x2,. . ., xn) = 0, the non-vanishing of the expression

∑n
i=1(∂�/∂xi)Xi everywhere in M, apart from the origin of coordinates, ensures that

there is no half-trajectory lying in M (the system ẋi = Xi(x1, . . . , xn)(i = 1, . . . , n) was considered). But the assertion in later publications
(see, for example, Ref. 1) that this condition is easily verified, is not so obvious. An exact solution of this problem can be obtained using the
method of invariant relations, developed in a number of papers (Refs. 3-5). The solution is constructed using higher derivatives of Lyapunov
functions. This confirms the correctness of the observation6 that the possibilities of obtaining new criteria of stability with several Lyapunov
functions and using their higher-order derivatives are obviously far from exhausted. We should add that this observation is also timely
today. One of the recent realizations of this idea can be found in Ref. 7.

Below, using the method of invariant relations, we propose a procedure for checking that the conditions of the Barbashin–Krasovskii
theorm are satisfied. A form of the equations is proposed for a system which satisfies the Barbashin–Krasovskii theorem, using which one
can obtain an explicit expression for Lyapunov function with a sign-definite derivative. Two illustrative examples are considered.

1. The Barbashin–Krasovskii theorem and the method of invariant relations

Consider the following system of differential equations

(1.1)

where D is a certain neighbourhood of zero, and the function f(x) is assumed to be continuously differentiable a sufficient number of times
for x ∈ D. The dot denotes differentiation with respect to time t of the dependent variable x, and also the functions V(x) by virtue of system
(1.1): V̇(x) = (∇V(x), f (x)). Here � is the differentiation operator, and as it applies to a scalar function it gives the gradient, while as applied
to a vector function it gives the Jacobi matrix, and the symbol (,) denotes the scalar product.
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Asymptotic stability of the zero solution can be established using the Barbashin–Krasovskii theorem [Refs. 1,2].

Theorem 1. If a positive function V(x) definitely exists, such that V̇(x) is a negative constant function and the set M = {x : V̇(x) = 0} does
not contain integer half-trajectories, apart from the point x = 0, the zero solution of system (1.1) is asymptotically stable.

We will assume that the Lyapunov function in Theorem 1 is continuously differentiable a sufficient number of times. Then the equation
V̇(x) = 0 defines, in the neighbourhood of zero, a certain set of surfaces Mi, described by the equations �i(x) = 0(i = 1,. . ., s), where �i(x) are
ki-dimensional differentiable vector functions, and ��i(x) �= 0 for x ∈ M, apart from x = 0.

We will check using the method of invariant relations, whether the set M = s∪
i=1

Mi contains integer half-trajectories, i.e., a certain invariant

manifold. We will present two theorems, which are necessary to solve this problem.

Theorem 2 (5). The invariant manifold of system (1.1), generated by the invariant relation �(x) = 0, is defined by the equations

(1.2)

where l is the number of functionally independent functions in the sequence �(x), �̇(x), �̈(x), . . ..

Theorem 3 (4). In order that the equations Vi(x) = 0 (i = 1,. . ., l) should define the invariant manifold of system (1.1), it is necessary and
sufficient that the functions Vi(x) should satisfy the following system of partial differential equations

where the functions �ij(x) have no singularities in the region considered.

Theorem 2 enables us to establish whether the set M = {x: �(x) = 0} contains the invariant manifold of system (1.1). To do this we must
consider the following system of equations

If this system has no other solutions, apart from the zero solution x = 0, system (1.1) has no invariant manifolds belonging to the set M,
apart from x = 0. Here it should be noted that it is important that the condition ��(x) �= 0 must be satisfied for x ∈ M, since its violation may
lead to compatibility of the system considered, but no invariant manifold.

In fact, suppose, for example, that �(x) = �2(x) (� ∈ R1). It is obvious that system (1.2) for l = 1 is compatible for any function �(x), but the
manifold �(x) = 0 is not an invariant manifold of system (1.1) if the function �(x) is arbitrary. The reason for this is the fact that ��(x) = 0 in
the set M = {x: �(x) = 0}. This must be taken into account when using the derivative of the Lyapunov function to check the conditions of the
Barbashin–Krasovskii theorem. This check must be made in two stages. At the first stage it is necessary to obtaining the equations of the
surfaces Mi, on which V̇(x) = 0 : �i(x) = 0(i = 1, . . . , s), ∇�i(x) �= 0 for x ∈ M.

At the second stage one must establish that the system of equations

(1.3)

has no solutions differing from x = 0. Taking this into account, we can formulate Theorem 1 as follows.

Theorem 4. Suppose a positive definite function V(x) exists such that V̇(x) is a negative constant function, while the set M = {x : V̇(x) = 0}
is the union M = s∪

i=1
Mi of the surfaces Mi, specified by the equations �i(x) = 0 (i = 1,. . ., s), where �i are ni-dimensional vector functions,

where the systems of equations (1.3) have no solutions, differing from x = 0. Then, the zero solution of system (1.1) is asymptotically stable.

We will apply Theorem 4 to the two examples considered.

Example 1 (7). Consider the system

(1.4)

We will take V = x2 + y2 as the Lyapunov function. We obtain V̇ = −2x4. The set M is defined by the equation x = 0. The system of equations
x = 0, ẋ = −x3 + ax2y + bxy2 + cy3 = 0 has only a zero solution. By Theorem 4 the zero solution of system (1.4) is asymptotically stable.
Note that, in this example, exactly this case occurs when it is necessary to transfer from the function V̇ = −2x4 to the function � = x, for
which ∇� �= 0 in M. (The author of this example, A. A. Tsygankov, used V(4)(x) in order to eliminate this singularity.)

Example 2. Consider the system

(1.5)

We will take V = x2
1 + x2

2 + x2
3 + x2

4 as the Lyapunov function. For the derivative V̇ = 2�1x2
1 + 2�2x2

2 + 2�4x4
4 we obtain V̇ ≤ 0 when �1 < 0,

�2 < 0, �4 < 0. The set M is defined by the equations
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supplementing which with one more equation

we obtain that when b �= 0 the system of equations

has only the zero solution (here the vector functions � = (�1, �2, �3)T is denoted by �). We conclude from Theorem 4 that the zero solution
of system (1.1) is asymptotically stable.

2. Auxiliary functions

When there is a Lyapunov function which satisfies the Barbashin–Krasovskii theorem, the Lyapunov function with sign-definite deriva-
tive can be constructed by adding to this function, which we use as the initial Vs, an additional function Va, the derivative of which V̇a is
positive in the set M = {x : V̇s = 0}. We must choose the function Va to be fairly small so that it cannot affect the sign-definiteness and sign-
constancy of the functions Vs, V̇s. It turns out that the conditions imposed by the Barbashin–Krasovskii theorem on system (1.1) enables
this to be done.

We will consider the case when the set M = {x : V̇ = 0} is specified by a single vector function �(x) = 0, and the presence in it of an
invariant manifold is established by the first two terms of sequence (1.2).

Lemma 1. Suppose system (1.1) satisfies the Barbashin–Krasovskii theorem and the set M = {x : V̇(x) = 0} is defined by one vector function:
�(x) = 0, for which the assumption made above holds.

Then the derivative of the function

(2.1)

takes a positive value V̇a = (∇�(x), f (x))2m+2 in the set M.

Proof. We will use the fact that �̇ = (∇�, f ) and we have � = 0 in the set M. Then, we obtain by direct differentiation �̇ = (∇�(x), f (x))2m+2

for x ∈ M. The inequality (��,f) �= 0 when �(x) = 0 follows from the fact that the assumption (��,f) = 0 when �(x) = 0 leads to the fact that the
system � = 0, �̇ = (∇�, f ) = 0 is compatible and allows of a non-zero solution, which, by Theorem 2, denotes the existence in the set M of
an invariant manifold, and this contradicts the satisfaction of the conditions of the Barbashin–Krasovskii theorem.

When the conditions of the Barbashin–Krasovskii theorem are satisfied, system (1.1) can be converted to a form which is more convenient
for constructing the Lyapunov function with sign-definite derivative.

Lemma 2. Suppose a positive-definite function V(x) with negative constant derivative exists for system (1.1), which vanishes in the set
M, and which does not contain integer half-trajectories. Then system (1.1) can be converted to the form

(2.2)

where the function fM(x) vanishes in the set M, while the function fN(x) is non-zero in the set M.

The existence of such a representation follows from the fact that if the function fN(x) did not exist, i.e. ẋ = fM(x), the derivatives of all the
functions �i(x), which define the set M, would vanish in the set M by virtue of the fact that �̇i(x) = (∇�i(x), fM(x)). By virtue of Theorem 1
this would mean that the set M contains an invariant manifold, which contradicts the above assumption.Representation (2.2) enables us
to simplify function (2.1).

Lemma 3. Suppose system (1.1) satisfies the Barbashin–Krasovskii theorem and is reduced to the form (2.2), and the set M = {x : V̇(x) = 0}
is defined by a single vector function: �(x) = 0. Then the derivative of the function

(2.3)

takes the positive value V̇a = (∇�(x), fN(x))2m+2 in the set M.

We will use Lemmas 1–3 to investigate the systems of Examples 1 and 2.

Example 1. For system (1.4), taking into account the equality � = x, we obtain from formula (2.1)

Representation (2.2) for system (1.4) has the form

while expression (2.3) for the function Va takes the form Va = (cy3)2m + 1x. The derivatives of the functions Va in the set M = {(x,y):x = 0} take

the value V̇a = (cy3)
2m+2

.
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Example 2. For system (1.5) we have ϕ1 = x1, ϕ2 = x2, ϕ3 = x4, and hence

Therefore, we obtain from formula (2.1)

(2.4)

Representation (2.2) for system (1.5) has the form

(2.5)

Taking formulae (2.3) and (2.5) into account, we obtain the following simplified expression for the function Va

(2.6)

The derivatives of the functions (2.4) and (2.6) in the set M take the value

3. Construction of the Lyapunov function

Suppose asymptotic stability of the zero solution is established for system (1.1) using the Barbashin–Krasovskii theorem. Then, by
Massera’s theorem,8 a positive-definite function exists the derivative of which will be a negative-definite function. We will construct such
a function using the function which occurs in the Barbashin–Krasovskii theorem and the additional functions introduced in Section 2.

Theorem 5. Suppose system (1.1) satisfies the Barbashin–Krasovskii theorem and the set M = {x : V̇(x) = 0} is defined by a single vector
function: �(x) = 0; ��(x) �= 0 with x ∈ M, x �= 0. We will assume that f(x), �(x) and V(x) are functions that are differentiable a sufficient number
of times; the sign-definiteness of the function V(x) is determined by a form of order �s; the sign-positiveness of V̇(x) and the inequality
(��(x), f(x)) �= 0 are defined by terms of the expansion in the neighbourhood of zero of finite order. Then numbers m and � exist such that
the function Vf(x) = Vs(x) + �Va(x) is positive-definite and its derivative V̇f (x) is negative-definite; here Vs(x) = V(x), and the function Va(x) is
defined by formula (2.3).

Proof. By virtue of the above assumptions for establishing the sign-definiteness of the functions Vf (x), V̇f (x), it is sufficient to analyse
the expansions of Vs(x), V̇s(x) and Va(x), V̇a(x). Since the positive-definiteness of the function Vs(x) is determined by a form of order
�s, while the expansion of the function fN(x) can begin with a first-order form, taking m ≥ �s/2 and any �, we obtain that the function
Vf(x) will be positive-definite, since the additional terms of the function Va(x) will have an order higher than �s, and do not change the
positive-definiteness of the function Vs(x).

To analyse the expansions of V̇s, V̇a we will convert system (1.1), introducing the variables

renumbering, if necessary, the variables xi so that this transformation is non-degenerate. Note that the set M is defined by the equation
y = 0. We will write system (1.1) in the form (2.2)

(3.1)

According to the definition of the functions fM and fN we have

and for function (2.3) we obtain the expression

where

We will use the expression obtained to calculate the derivative of the function Va according to system (3.1). We have

(3.2)
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We will represent the derivative V̇f in the form

(3.3)

In view of the condition f1N(z) �= 0 for z �= 0 we conclude that for � < 0 the function V̇s(y) + �f 2m+2
1N (z) is negative-definite. To establish

the negative-definiteness of V̇f we will analyse the effect of V̇fa(y, z). We will estimate the smallness of the terms V̇f , using representation
(3.3). Suppose �1 is the maximum order of the form in the expansion of V̇s, which determines its sign-constancy. We obtain from formulae
(3.2) and (3.3)

Here we have taken into account the fact that the expansion of f1M(y,z) with respect to y begins with terms of power no lower than the first.
Since the expansion of f1N(z) begins with terms no lower than the first power of z, ||f1N(z)|| ∼ o(||z||) and V̇fa(y, z) = o(||z||2m)O(||y||). We will
estimate the effect of the function V̇fa(y, z) for y ∼ zk when k > 0. For 0 < k ≤ 2, assuming m > �1, we have V̇fa ∼ o(V̇s), while for k > 2 we have
V̇fa(y, z) = o(||z||2m+2). Hence it follows that the function V̇fa(y, z), with the above assumptions, does not disturb the negative-definiteness
of V̇s(y) + �f 2m+2

1N (z). Summing up the discussions, we can assert that the theorem holds if we choose

We will use Theorem 5 to construct a Lyapunov function with sign-definite derivative in Examples 1 and 2.

Example 1. In this case

hence �s = 2 and �1 = 4. We take m = 4 and � = −1 and we obtain as the Lyapunov function

We find

Example 2. In this case

and hence �s = 2 and �1 = 4. We take m = 4 and � = −1 and we obtain as the Lyapunov function

We find
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